A rotary screw compressors use two meshing helical screws, known as rotors, to compress the gas. In a dry running rotary screw compressor, timing gears ensure that the male and female rotors maintain precise alignment. In an oil-flooded screw compressor, lubricating oil bridges the space between the rotors, both providing a hydraulic seal and transferring mechanical energy between the driving and driven rotor. Gas enters at the suction side and moves through the threads as the screws rotate. The meshing rotors force the gas through the compressor, and the gas exits at the end of the screws.
The effectiveness of this mechanism is dependent on precisely fitting clearances between the helical rotors, and between the rotors and the chamber for sealing of the compression cavities.
Typically, they are used to supply compressed air for general industrial applications. Trailer mounted diesel powered units are often seen at construction sites, and are used to power air operated construction machinery.
In an oil-free compressor, the air is compressed entirely through the action of the screws, without the assistance of an oil seal. They usually have lower maximum discharge pressure capability as a result. However, multi-stage oil-free compressors, where the air is compressed by several sets of screws, can achieve pressures of over 150 psig, and output volume of over 2000 cubic feet (56.634 cubic meters) per minute (measured at 60 °C and atmospheric pressure).
Oil-free compressors are used in applications where entrained oil carry-over is not acceptable, such as medical research and semiconductor manufacturing. However, this does not preclude the need for filtration as hydrocarbons and other contaminants ingested from the ambient air must also be removed prior to the point-of-use. Subsequently, air treatment identical to that used for an Oil-flooded screw compressor is frequently still required to ensure a given quality of compressed air.
In other applications, this is rectified by the use of receiver tanks that reduce the local velocity of compressed air, allowing oil to condense and drop out of the air stream to be removed from the compressed air system via condensate management equipment.